Also known as IIoT, industrial IoT devices acquire and analyze data from connected equipment, operational technology (OT), locations, and people. Combined with operational technology (OT) monitoring devices, IIoT helps regulate and monitor industrial systems. Also, the same implementation can be carried out for automated record updates of asset placement in industrial storage units as the size of the assets can vary from a small screw to the whole motor spare part, and misplacement of such assets can cause a percentile loss of manpower time and money.
The IoT can connect various manufacturing devices equipped with sensing, identification, processing, communication, actuation, and networking capabilities. Network control and management of manufacturing equipment, asset and situation management, or manufacturing process control allow IoT to be used for industrial applications and smart manufacturing.[63] IoT intelligent systems enable rapid manufacturing and optimization of new products and rapid response to product demands.
Digital control systems to automate process controls, operator tools and service information systems to optimize plant safety and security are within the purview of the IoT. IoT can also be applied to asset management via predictive maintenance, statistical evaluation, and measurements to maximize reliability. Industrial management systems can be integrated with smart grids, enabling energy optimization. Measurements, automated controls, plant optimization, health and safety management, and other functions are provided by networked sensors.
In addition to general manufacturing, IoT is also used for processes in the industrialization of construction.
There are numerous IoT applications in farming such as collecting data on temperature, rainfall, humidity, wind speed, pest infestation, and soil content. This data can be used to automate farming techniques, make informed decisions to improve quality and quantity, minimize risk and waste, and reduce the effort required to manage crops. For example, farmers can now monitor soil temperature and moisture from afar and even apply IoT-acquired data to precision fertilization programs. The overall goal is that data from sensors, coupled with the farmer's knowledge and intuition about his or her farm, can help increase farm productivity, and also help reduce costs.
In August 2018, Toyota Tsusho began a partnership with Microsoft to create fish farming tools using the Microsoft Azure application suite for IoT technologies related to water management. Developed in part by researchers from Kindai University, the water pump mechanisms use artificial intelligence to count the number of fish on a conveyor belt, analyze the number of fish, and deduce the effectiveness of water flow from the data the fish provide. The FarmBeats project from Microsoft Research that uses TV white space to connect farms is also a part of the Azure Marketplace now.
IoT devices are in use monitoring the environments and systems of boats and yachts. Many pleasure boats are left unattended for days in summer, and months in winter so such devices provide valuable early alerts of boat flooding, fire, and deep discharge of batteries. The use of global internet data networks such as Sigfox, combined with long-life batteries, and microelectronics allows the engine rooms, bilge, and batteries to be constantly monitored and reported to connected Android & Apple applications for example.
.